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According to the Uniform Information Density (henceforth, UID) hypothesis (Levy and Jaeger,
2007; Jaeger, 2010), language production shows a preference to distribute information uniformly
across the linguistic signal. The aforementioned studies validated the UID hypothesis using
syntactic reduction phenomena, viz., that-complementizer and relativizer mention (or omission),
at particular choice points in a sentence. In contrast, we studied the effects of UID across
entire sentences in English syntactic choice alternations. We used a multi-construction dataset
(dative alternation, quotation, pre and postverbal adjuncts) created by Rajkumar et al. (2016, see
Section 4 and Table 3 therein), consisting of 6415 Brown corpus reference sentences and 8385
automatically constructed variants expressing the same idea using a different order of words:

(1) She came to New York from Detroit as a teenager but with a sponsor instead of a
chaperone. vs She came from Detroit to New York as a teenager but ...

Collins (2014) showed that measures modelling UID were significant predictors of human
acceptability ratings of syntactic choice. Inspired from this work, we quantified uniformity in
information spread in a sentence using the following measures defined at both lexical and
syntactic levels: coefficient of variation (COV), global and local UID measures (UIDglob and
UIDloc), normalized global and local UID measures (UIDglobNorm and UIDlocNorm) (see
final page for formulae). For each reference and variant sentence, we computed various UID
measures using per-word estimates of trigram and PCFG surprisal (see final page for surprisal
estimation procedure). Sentence-level surprisal values were obtained by summing the per-word
surprisal scores over all the words in a sentence. Since our original dataset is highly unbalanced
(variants outnumber reference sentences), we used a transformation (see final page) to pair
reference sentences with each of its variants (Joachims, 2002). Subsequently surprisal and UID
measures were incorporated into a logistic regression classifier aimed to distinguish reference
sentences from variants. The output of the regression model containing individual predictors
showed a consistent negative regression coefficient for all our predictors including surprisal
and UID measures except syntactic UIDglob (see Table 1 overleaf). The negative regression
weights of surprisal predictors suggest that the log odds of predicting a reference sentence (over
a variant) increases with lower surprisal values. The negative coefficient for our UID measures
indicates that reference sentences (preferred choice) have lower uniformity as compared to
variants suggesting a violation of UID predictions. Further, none of the UID measures discernably
improved reference sentence prediction accuracy over and above a baseline model containing
trigram and PCFG surprisal (Table 2). This seems to suggest a null effect of UID in presence of
surprisal-based controls, contrary to previous work on UID and word order cited above.

Construction-specific analyses revealed a significant UID effect of both UIDglobNorm and
COV lexical measures for the dative alternation construction. These measures significantly
contributed over and above trigram and PCFG surprisal in predicting reference sentences with
postverbal NP-NP structure over variants with NP-PP structure. Further exploration showed that
the success of UID in dative alternation was mostly associated with NP-NP structures involving
pronouns (76% cases). Figure 1 depicts the trend visually for the examples below:

(2) She wants to pay [you]NP [a visit]NP. vs She wants to pay [a visit]NP [to you]PP.

This result suggests that pronouns might carry peculiar information properties, which requires
further investigation. Overall, we conclude that UID might be effective for accounting syntactic
reduction phenomena but not for predicting reference sentences amidst variants. As a part of
future work, we plan to create counterfactual treebanks along the lines of Hahn et al. (2020) and
test UID predictions for syntactic choice phenomena by training language models on them.



Predictor(s)
Logistic Regression

Lexical UID Syntactic UID
Weight(s) %Acc Weight(s) %Acc

3g surprisal -0.66 65.89 -0.66 65.89
PCFG surprisal -0.43 72.27 -0.43 72.27
UIDglob -0.86 53.89 0.11 52.63
UIDloc -0.1 52.15 -0.002 49.58
UIDglobNorm -12.43 59.58 -0.72 51.13
UIDlocNorm -2.41 56.92 -0.69 52.37
COV -13.60 59.44 -0.77 51.03

Table 1: Performance of logistic regression
models consisting 8385 data points
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Figure 1: Trigram information variation (hartleys/word)
across a pair of reference-variant sentences

Predictor(s)
Logistic Regression

Lexical UID measures Syntactic UID measures
Weight(s) %Accuracy Weight(s) %Accuracy

Baseline=Trigram+PCFG surprisal -0.38 -0.37 73.99 -0.38 -0.37 73.99
Baseline+UIDglob -0.39 -0.37 0.19 74.00 -0.38 -0.37 0.03 74.00
Baseline+UIDloc -0.38 -0.37 -0.08 73.93 -0.38 -0.37 -0.04 73.91
Baseline+UIDglobNorm -0.42 -0.36 2.09 73.92 -0.38 -0.37 -0.11 73.94
Baseline+UIDlocNorm -0.37 -0.37 -0.25 73.89 -0.38 -0.37 -0.41 73.89
Baseline+COV -0.42 -0.36 2.67 73.92 -0.38 -0.37 0.05 73.97

Table 2: Performance of logistic regression models consisting of 8385 data points
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Supplementary Materials

We have used sentence-level UID measures as proposed in Jain et al. (2018) for investigating
the effects of UID on Hindi syntactic word-ordering choice. The information density of a sentence
is computed via per-word contextual probabilities using trigram and PCFG parser surprisal
models as explained below:

Notation: N is the number of words in a sentence, idi is the information density or surprisal (negative
lexical/syntactic log-probability) of the ith word of the sentence, µ is defined as the mean information den-

sity of the sentence, i.e., µ ≡ 1
N ∑

N
i=1 idi and σ is spread of information from the mean, i.e., σ ≡

√
∑

N
i=1(idi−µ)2

N

1. Coefficient of Variation: COV =−σ

µ

This captures the degree of variation (extent of variability) among different data series. The negative
sign indicates higher uniformity corresponding to the lower ratio of the standard deviation to mean.

2. Global UID Measure: UIDglob =− 1
N ∑

N
i=1(idi −µ)2

This captures the uniformity in information (negative variance) across an entire sentence (globally).
The negative sign corresponds to minimization of variance of information, viz., different points in a
sentence should carry similar information.

3. Local UID Measure: UIDloc =− 1
N ∑

N
i=2(idi − idi−1)

2

This measure captures the uniformity in information (negative mean-squared variance) per word
relative to the previous word (locally).

4. Normalized Global UID Measure: UIDglobNorm =− 1
N ∑

N
i=1(

idi
µ
−1)2

This measure encapsulates the global variance of information as explained in UIDglob above, but
is also normalized relative to the mean information density (µ) over all words in the sentence.

5. Normalized Local UID Measure: UIDlocNorm =− 1
N

∑
N
i=2(idi−idi−1)

2

µ2

This measure also normalises UIDloc viz., local information using the mean information density of
the sentence.

We estimate trigram surprisal by training language model on Open American National Corpus
(OANC) containing 1 million sentences of mixed genres. We compute PCFG surprisal by training
Berkeley constituency parser on WSJ sections (02-21) of the Penn Treebank (PTB) corpus. In
future inquiries, we plan to test UID predictions by incorporating string complexity over syllables
and graphemes in UID metric computation as proposed in Levy (2018, see Equation 6 therein).

choice ∼ ngram surprisal+parser surprisal+UID measures (1)

All the experiments have been conducted in R using Glm package in 10-fold cross-validation
setting. In Equation 1, the variable choice is a binary dependent variable (1 stands for correct
choice i.e., corpus sentence is ranked higher than its paired variant and 0 denotes the incorrect
choice i.e., model prefers variant over its reference sentence). We transformed our data set using
a technique originally proposed by Joachims (2002) for ranking web pages. The transformation
converts a binary classification task (labelling a sentence as reference vs variant) into a pairwise
ranking task involving the feature vectors of a reference sentence and each of its variants. We
trained a machine learning model on the difference between the aforementioned feature vectors
as per the equations below:

1. w ·φ(Re f erence)> w ·φ(Variant) 2. w · (φ(Re f erence)−φ(Variant))> 0

Equation 1 above shows the model prediction where reference sentence outranks one of its
variants when the dot product of the feature vector of the reference sentence and w (learned
feature weights) is greater than the corresponding dot product of the variant sentence. This
relationship can also be expressed in the form of Equation 2 , where the feature values of the
first member of the pair were subtracted from the corresponding values of the second member.
We created ordered pairs consisting of the feature vectors of reference-variant sentences.


