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Context guides comprehenders’ expectations during language processing. This study examines 
the roles of local context and broad context during natural language comprehension. 
Information-theoretic surprisal (Hale, 2001; Levy, 2008) can be utilized to capture both types of 
contextual cues. Surprisal can be interpreted as “the degree to which the actually perceived 
word deviates from expectation” (Lopopolo et al., 2017) and the expectation can be based on 
information from the immediately preceding words or previous sentences and paragraphs.  
     In this study, we use surprisal to look at how use of local and broader context are reflected in 
processing using an analysis of fMRI time courses collected during naturalistic listening. Lexical 
surprisal estimated using an LSTM (long short-term memory) language model is used to 
represent local context (van Schijndel & Linzen, 2018). For broader topical context, we use a 
new metric, topical surprisal (Bhattasali & Resnik, 2020). It is defined using ​the weighted 
average of a word's probability given a topic, where weights are the (posterior) probability that 
the context is about that topic​; topics can be defined and probabilities estimated using a topic 
model (LDA; Blei et al., 2003).  
     Participants (n=51) listened to ​The Little Prince​’s audiobook for 1 hour 38 minutes. 
Participants' comprehension was confirmed through multiple-choice questions. ​(90% accuracy, 
SD = 3.7%). The LSTM language model was trained on 90 million words of English Wikipedia 
(Gulordava et al., 2018). Using the wrapper for Mallet LDA (McCallum, 2002) in the Gensim 
toolkit (Rehurek & Sojka, 2010), we estimated a 100-topic model using the Brown corpus 
(Francis & Kučera, 1964). We compute topical surprisal for each of the 6,243 non-function 
words in the audio sample using the paragraph containing the word as its context (see Fig. 2). 
Additionally, we entered four regressors of non-interest into the GLM analysis (SPM12): 
word-offset, word frequency, pitch, intensity.  
     The whole-brain main effects were FWE-corrected (T-score > 5.3). Regression analyses 
localized the activation patterns for local and broad context to different areas. The peak 
activation for lexical surprisal (instantiating local context) was observed in bilateral ATL, along 
with a small cluster in left STG. Significant clusters for topical surprisal (instantiating broad 
context) were seen in the right Precuneus and right MTG (Fig. 1). 
 Our lexical surprisal results 

corroborate previous findings by 
Willems et al., (2015), Brennan et al., 
(2016), Shain et al., (2020) for 
bilateral ATL and by Willems et al. 
(2015), Lopopolo et al. (2016), Shain 
et al. (2020) for STG. Our topical 
surprisal results are supported by 
prior work on context and 
discourse-level phenomena 
(Bhattasali & Resnik, 2020; Maguire 
et al. 1999; Raposo et al., 2013; 

Whitney et al., 2009; Xu et al., 2005) and further supports this measure as a cognitively 
plausible metric  with distinct neural substrates from lexical surprisal. Our novel approach to 
investigating contextual fit beyond the sentence level is also broadly consistent with the 
argument that  smaller versus larger temporal receptive windows implicate regions associated 
with lower-level and higher-level tasks respectively (Lerner et al., 2011), a connection we plan 
to explore further. Overall the neurocognitive correlates for lexical surprisal and topical surprisal 
suggest that utilizing local and broad contextual cues during language processing recruit 
different brain regions and illustrate that various regions of the language network functionally 
contribute to processing different dimensions of contextual information.  
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